distributed with location g; on a subjective continuum
(cf. also Normal distribution). A special case gives
that the probability that T; is preferred to T; is equal
to

1 o0
P(T: > Tj) = P(Xi > X;) = == / ( )e—wz dy.
v ~(pi—p;

If the normal density function is replaced by the logis-
tic density function, the model is equal to the Bradley-
Terry model with u; = Inn;. H. Stern has considered,
[10], models for paired comparison experiments based
on comparison of gamma random variables. Different
values of the shape parameter yield different models,
including the Bradley-Terry model and the Thurstone
model. Likelihood methods can be used to estimate the
parameters of the models. The likelihood equations must
be solved with iterative methods.

It is also possible to fit response surfaces in paired
comparison experiments (see, e.g., [9], [2]). Mostly it
is assumed that the parameters m;, i = 1,...,t, are
functions of continuous variables zi,...,z, such that
the formulated model is linear in the unknown pa-
rameters B;. If such a model is formulated, then it is
possible to discuss the question of optimal design in
paired comparison experiments. Many criteria for op-
timal design depend on the variance-covariance matrix
of the estimators for the unknown parameters ;. How-
ever, the asymptotic variance-covariance matrix itself
depends on the unknown parameters (see, e.g., [9], [2]).
A. Springall has defined, [9], so-called analogue designs.
These are designs in which the elements of the paired
comparison variance-covariance matrix are proportional
to the elements of the classical response surface variance-
covariance matrix with the same design points.

In order to find designs, E.E.M. van Berkum has as-
sumed, [2], that the parameters §; are all equal. In that
case the variance-covariance matrix is proportional to
the variance-covariance matrix for the estimators in an
ordinary linear model and general optimal design theory
can be applied (D-optimality, G-optimality, equivalence
theorem). He also gives optimal designs for various fac-
torial models.

There is much literature on paired comparison ex-
periments and related topics such as generalized linear
models, log-linear models, weighted least squares and
non-parametric methods. A bibliography up to 1976 is
given in [7]. The state of the art as of 1976 is given in
(3], and as of 1992 in [5].

References
[1) BEAVER, R.J., AND GOKHALE, D.V.: ‘A model to incorporate
within-pair order effects in paired comparisons’, Commun. in
Statist. 4 (1975), 923-929.
[2] BErRkUM, E.E.M. VAN: Optimal paired comparison designs
for factorial ezperiments, Vol. 31 of CWI Tract, CWI, Ams-
terdam, 1987.

400

[3] BRADLEY, R.A.: ‘Science, statistics and paired comparisons’,
Biometrics 32 (1976), 213-232.

[4] BraDLEY, R.A., AND TERRY, M.E.: ‘The rank analysis of
incomplete block designs. I. The method of paired compar-
isons’, Biometrika 39 (1952), 324-345.

[5] Davip, H.A.: ‘Ranking and selection from paired-comparison
data. With discussion’ The Frontiers of Modern Statisti-
cal Inference Procedures Il (Sydney, 1987), Vol. 28 of Math.
Management Sci., Amer. Sci. Press, 1992, pp. 3-24.

[6] DavipsoN, R.R.: ‘On extending the Bradley-Terry model
to accommodate ties in paired comparison experiments’, J.
Amer. Statist. Assoc. 65 (1970), 317-328.

[7] DavibsoN, R.R., AND FARQUHAR, P.H.: ‘A bibliography on
the method of paired comparisons’, Biometrika 32 (1976),
241-252.

[8] Rao, P.V., aAND KUPPER, L.L.: ‘Ties in paired-comparison
experiments: A generalization of the Bradley-Terry model’,
J. Amer. Statist. Assoc. 62 (1967), 194-204.

[9] SPRINGALL, A.: ‘Response surface fitting using a generaliza-
tion of the Bradley- Terry paired comparison model’, Appl.
Statist. 22 (1973), 59- 68.

[10] STERN, H.: ‘A continuum of paired comparison models’,
Biometrika 77 (1990), 265-273.
[11] THURSTONE, L.L.: ‘Psychophysical analysis’, Amer. J. Psy-
chol. 38 (1927), 368--389.
E.E.M. van Berkum

MSC1991: 62J15, 62K05

PARACONSISTENT LOGIC - A relation of logical
consequence, -, on a set of sentences, S, is explosive if
and only if for all @, 3 € S,

a,-atl B,

where ‘—’ is negation. A relation, and the logic that pos-
sesses it, is paraconsistent if and only if it is not explo-
sive. Whether or not a correct consequence relation is
explosive has been a contentious issue historically, but
the standard formal logics of the 20th century, such as
classical logic (cf. Logical calculus) and intuition-
istic logic are explosive. Formal paraconsistent logibs
were developed by a number of different people, often
working in isolation from each other, starting around
the 1960s.

There are many different paraconsistent logics, with
their own proof theories and model theories. Their dis-
tinctive features occur at the propositional level, though
they all have full first- (and second-) order versions. In
most of them validity can be defined in terms of preser-
vation of truth in an interpretation.

In one approach, due to S. Jaskowski, an interpreta-
tion is a Kripke model (cf. Kripke models) for some
modal logic, and a sentence is true in it if it holds
at some world of the interpretation. A major feature
of this approach is that the inference of adjunction
(o, B F a A B) fails. In another, an interpretation v, is
a mapping from S to {1,0}, satisfying the usual classi-
cal conditions for A, V, and —. v(~a) is independent of
v(a). The addition of further constraints on v, such as:




v(a) = 0 = v(-a) = 1, give logics in N. da Costa’s C
family. A feature of this approach is that it preserves all
of positive logic. In a third approach, an interpretation v

is a mapping from S to the closed sets of a topological .

space T satisfying the conditions v(aAB) = v(a)Nv(B),
v(aV B) = v(e) U v(B), v(-a) = v(a)’ (where c is the
closure operator of 7). a is true under v if and only
if v(a) is the whole space. This gives a logic dual to
intuitionistic logic.

In a fourth approach, an interpretation is a relation
p C S x {1,0}, satisfying the natural conditions

~apl & apl,
—~ap0 & apl;
a A Bpl & apl and Bpl,
a A Bp0 & aplor Bp0;

and dually for V. & is true under p if and only if apl.
This gives the logic of first degree entailment (FDE) of
A. Anderson and N. Belnap. If one restricts interpre-
tations to those satisfying the condition Va3rapz, one
gets G. Priest’s LP. A feature of this logic is that its log-
ical truths coincide with those of classical logic. Thus,
the law of non-contradiction holds: F —~(a A —a). A De
Morgan lattice is a distributive lattice with an ad-
ditional operator — satisfying: -——a¢ = a and a < b =
—b < —a. An FDE-interpretation can be thought of as
a homomorphism into the De Morgan lattice with val-
ues {{1},{1,0},0,{0}}. More generally, a - 8 in FDE
if and only if for every homomorphism h into a De Mor-
gan lattice, h(a) < h(8). Augmenting such lattices with
an operator — satisfying certain conditions, and defin-
ing validity in the same way, gives a family of relevant
logics.

A paraconsistent logic localizes contradictions, and so
is appropriate for reasoning from information that may
be inconsistent, e.g., information stored in a computer
database. It also permits the existence of theories (sets
of sentences closed under deducibility) that are incon-
sistent but not ¢riviel (i.e., containing everything) and
of their models, inconsistent structures.

One important example of an inconsistent theory is
set theory based on the general comprehension schema
(3zVy(y € z & a), where « is any formula not contain-
ing z), together with eztensioneality (Vz(z € y & = €
z) F y = z). Another is a theory of truth (or of other
semantic notions), based on the T-schema (T{c) + a,
where o isyany closed formula, and (-) indicates a name-
forming device), together with some mechanism for self-
reference, such as arithmetization. Such theories are in-
consistent due to the paradoxes of self-reference (cf. An-
tinomy).

Not all paraconsistent logics are suitable as the under-
lying logics of these theories. In particular, if the under-
lying logic contains contraction (@ = (e = ) F a = )
and modus ponens (a,a — (8 F (3), these theories are
trivial. However, the theories are non-trivial if — is in-
terpreted as the material conditional and the logic LP
is used, or if it is interpreted as the conditional of some
relevant logics. In the truth theories, the inconsistencies
do not spread into the arithmetical machinery.

Given a topos, logical operators can be defined as
functors within it, and a notion of internal validity can
be defined, giving intuitionistic logic. If these operators,
and in particular, negation, are defined in the dual way,
the internal logic of the topos is the dual intuitionistic
logic. Topoi can therefore be seen as inconsistent struc-
tures.

For another example of inconsistent structures, let
A be the set of sentences true in the standard model of
arithmetic. If B is a set of sentences in the same language
properly containing A, then B is inconsistent, and so has
no classical models; but B has models, including finite
models, in the paraconsistent logic LP. Inconsistent (sets
of) equations may have solutions in such models. The
LP-models of A include the classical non-standard mod-
els of arithmetic (cf..Peano axioms) as a special case,
and, like them, have a notable common structure.

In inconsistent theories of arithmetic, the incomplete-
ness theorems of K. Gddel (cf. Godel incompleteness
theorem) fail: such a theory may be axiomatizable and
contain its own ‘undecidable’ sentence (and its nega-
tion).

Inconsistent theories may be interesting or useful
even if they are not true. The view that some incon-
sistent theories are true is called dialetheism (or di-
alethism).

For a.general overview of the area, see (2]. [3] is a col-
lection of articles, with much background material. On
inconsistent mathematical structures, see [1].
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PARTIALLY SPECIFIED MATRICES, COMPLE-
TION OF - A partially specified (p x q)-matriz is a
(p x q)-array of complex numbers (or, more generally,
of elements over an arbitrary field) in which certain
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